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J. Phys. A: Math. Gen., Vol. 10, No. 4, 1977. Printed in Great Britain. @ 1977 

Separation of variables in the Hamilton-Jacobi equation for 
non - conserva tive systems 

F Cantrijnt 
Instituut voor Theoretische Mechanica, Rijksuniversiteit Gent, B-9000 Gent, Belgium 

Received 20 September 1976, in final form 2 2  November 1976 

Abstract. Extending the method of Havas for conservative systems, the separability of the 
Hamilton-Jacobi equation is investigated for mechanical systems described by a time- 
dependent Hamiltonian, including systems possessing a velocity-dependent potential 
energy. It is shown that for n degrees of freedom there exist n + 1 different types of 
separable systems, of which the corresponding Hamiltonians are derived after constructing 
the separated differential equations. Herewith a more profound and systematic approach is 
given to the results of Iarov-Iarovoi, which have been obtained on a more intuitive basis. 

1. Introduction 

In 1963, Iarov-Iarovoi solved the problem of determining all Hamiltonians of the form 
n n 

H 3 i  gi’(ql, * * 7 4 n ,  t)Pip/+ g‘(q1, * 9 4 n i  l )Pi+4go(ql ,  * 3 4 n 9 . t )  
I , /  = 1 r=l 

+ v(qi, , 4n, t ) ,  
where g” = g”, for which the corresponding Hamilton-Jacobi equation$ 

is separable. In spite of the briefness of the method developed by Iarov-Iarovoi (1963), 
there is, however, a certain lack of clarity in some of his arguments. Moreover a 
solution is postulated which, afterwards, turns out to be the most general one. Finally 
some characteristics of the functions occurring in the Hamiltonian under consideration, 
merit a closer inspection. The main purpose of the present article is to give a more 
systematic approach to the problem. 

In an article on the separation of variables in the Hamilton-Jacobi, Schrodinger and 
related equations, Havas (1975) derived all types of time-independent Hamiltonians, 
without linear terms in the momenta, for which the Hamilton-Jacobi equation is 
separable. His work was essentially based on the results obtained by Levi-Civita 
(1 904), who proved the existence of n + 1 types of separable systems in n dimensions, 
and by Dall’Acqua (1912) and Burgatti (1911), who gave the general form of the 

+Aspirant bij het Nationaal Fonds voor Wetenschappelijk Onderzoek, Belgium. 
$ Here and in the following we shall write q for the collection of the qz and p for the collection of the pz 
(i = 1,. , . , n). 
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separated differential equations. (For another approach to the time-independent 
problem we also refer to some articles of Agostinelli (1936), (1937).) 

The generalization to non-conservative systems first appears in a paper of Forbat 
(1944). He deduced the conditions satisfied by a Hamiltonian of the form (1) for which 
separation of the variables in (2) is possible: 

i = l , 2  , . . . ,  n. 
aH a2H -aH a2H ----- 
apI aq, at - asl apl at' 

These conditions are a generalization of those deduced by Levi-Civita (1904) for 
time-independent Hamiltonians. They are to be satisfied identically. 

Forbat further treated the special case in which H contains no linear terms in the 
momenta ( g i  = 0 for all i) and $go + V is supposed to depend on all the generalized 
coordinates. Starting from the conditions (Cl) and (C2)  our treatment will be an 
extension of the one followed by Dall'Acqua (1912) and Havas (1975). 

In § 2 we shall derive some further properties of a Hamiltonian satisfying (C,) and 
(C2). In § 3 the results so obtained will be used for constructing the general form of the 
separated differential equations. A straightforward calculation will then finally lead to 
a necessary and sufficient condition for separability, giving the general form of the 
functions gij, g' and ;go+ V, which also occur in the article of Iarov-Iarovoi (1963). 
Along with some general remarks, in the last section we shall also make a comparison 
with the special case treated by Forbat (1944). The Hamiltonian (1) describes general 
non-conservative systems, including those having a velocity-dependent potential 
energy. In the latter case it is known that the potential energy may only depend linearly 
on the generalized velocities (Gantmacher 1970). The velocity-independent part of the 
potential energy is denoted by V. 

Restricting ourselves to mechanical systems, all functions appearing in (1) are 
supposed to be continuous and sufficiently differentiable in an appropriate domain. 

2. Preliminary calculations 

Consider a mechanical system, possessing a Hamiltonian of the form (1). We shall 
sometimes use the abbreviation: 

where 

We assume that aH/ap, Z 0 for all i = 1,2 ,  . . . , n, for otherwise the number of degrees of 
freedom could immediately be diminished. Suppose the Hamilton-Jacobi equation (2) 
is separable. The conditions (Cl) and (C,) are thus satisfied and there must exist a 
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complete integral of the form 

where c is a set of n real independent arbitrary constants c1, CZ, . . . , cn. 
Our aim is to construct such a complete integral, following an analogous method 

such as the one used by Dall’Acqua (1912). In both identities (C,) and (Cl), the 
left-hand side is divisible by aH/api?. and, consequently, so must be the right-hand side. 
We now divide the coordinates into two disjunct sets, called coordinates of the first and 
of the second kind, respectively, 

Il = {41 : aH/aq, is divisible by aH/api or aH/aq, = O}, 
I2 = {q,: aH/aq,$ 0 and aH/aq, is not divisible by aH/ap,}. 

For each E II there exists a function N,(q, p ,  t ) ,  polynomial in the momenta, such that 

It follows from (4) that Ni can be written as 

N, =NI’’ + NIo’, 

with Nl”(4, p ,  t )  a homogeneous linear function in the momenta and M0’(4, t )  indepen- 
dent of the momenta. Splitting up (4) we obtain: 

For each q, E Iz ,  it follows from (C,) and (C,) that the factors on the right-hand sides, 
different from aH/aqr, must be divisible by aH/apr. Consequently, there must exist a 
function K,(q, p ,  t )  and, for each s(s # r ) ,  a functionM,,(q, p ,  t ) ,  which are polynomial in 
the momenta and satisfy the following identities: 

( 5 )  
aH a2H aH a2H aH 

f r, 4r E 1 2 ,  ------- = Msr, 
aps 84s aPr a4s aps aPr aPr 
a2H aH 

at ap, 
= K,. 

One can easily check that K, has to be independent of the momenta, i.e. K, = K$O’(4, t ) ,  
and that Ms, can be written as 

M,, =M$f’+,@:), 

t In this paper, a function f(4, p ,  t )  is said to be divisible by aH/ap, if and only if there exists a function g(4, p ,  t )  
being polynomial in the momenta, such that f(4, p ,  t )  = (JH/Jp,)g(q, p ,  t ) ,  
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with Mji'(q, p, t )  homogeneous linear in the momenta and M:)(q, t )  independent of the 
momenta. Both identities ( 5 )  and ( 6 )  can now be split up into respectively 

and 

We shall first derive an explicit expression for the functions Msr. Differentiation of ( 5 )  
with respect to pr yields 

aH aMsr = grrMsr +- -, aH agrr 
aps 84s apr aPr 

and, after a second differentiation with respect to pr: 

or 

aMsr- grs agrr 
apr 2g" a& 
-=-- 

(7) 

It may be noticed here, for justifying this last step, that the functions g" ( j  = 1,2 ,  , . . , n )  
vanish nowhere in the relevant domain. This arises from some considerations about the 
term H2 in H. In fact, for a mechanical system, this term ought to be positive definite, 
for it represents the quadratic part of the kinetic energy (expressed in the momenta). It 
then follows from Sylvester's inequalities that none of the diagonal elements g" of the 
symmetric square matrix ( g " )  may vanish (Gantmacher 1970). (They even have to be 
strictly positive.) 

Substitution of (8) into (7) now gives rise to the following result: 

and so: 
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Taking into account (5) and (6), the identities (C,) and (C2) can be written, for each 
q r  E 12, as 

Differentiation of (5) with respect to qr and of ( l o a )  with respect to pr gives, after 
subtraction of both results, 

(1 1)  
a2H aZH 

Calculating azH/aqr aq, and a*H/aq, ap, respectively from ( l o a )  and ( 5 )  and substitut- 
ing the results into ( 1  l ) ,  we obtain after a straightforward calculation (using (8) and (9)) 

a2H 
2g" -. 

aPr aqr aqr apr aq, ap, aq, aPr aqr aqs 
aH aM,, - aH ah!,, 

+ 

--- - 

(12) a2H 
2 ag" a2H aHaH grs ag" 

g" aqs aqr ap, ap, aps (g")2 aqs aqr ap, apr 
+- - - - __- __ - - 

This must hold for all s(s # r ) ,  whenever qr is a variable of the second kind. 
If aH/ap, is not divisible by aH/ap,, it follows immediately from ( 1 2 )  that the first 

term on the right-hand side of this identity must vanish, since then it is the only one 
which is not divisible by dH/ap,. This clearly means that 

taking into account that neither aH/aq, nor aH/ap, (by assumption) are identically zero. 
It can be proved quite easily that (13) still holds when aH/ap, is divisible by aH/dp, 

for some particular s(s Z r ) ,  In that case, the left-hand side as well as the last two terms 
on the right-hand side of (12 )  are divisible by (dH/dp,)'. The sum of the first two terms 
on the right-hand side must vanish, yielding either (13 )  or 

This, however, is consistent with (13), since differentiation of (14) with respect to pr 
shows that in the latter case grs = 0. With (13) M,, becomes 

1 agrr aH M,, E - - - 
g" 84, ap,' 

If q, E I,, the right-hand side of (15 )  must vanish, for no factor is divisible by aH/ap,. 
Since by definition of I,, aH/aq, $0, we must have 

g" = 0, qr E I27 4s E I27 # (16 )  
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From (15) we also get in this case: 

a2H 1 ag"aH- 
-=O,  ---- 

apr aqs g" 84s aPr 

or, after division by g" (which is allowed according to the remark following (8)) 

and so 

Let us now consider the case that qr E I2 and qs E Il. If grs+ 0 it follows from (13) that 

By (4) we also have: 

where N, is of the first degree in the momenta. Differentiating (19) twice with respect to 
pr, we obtain 

-"2g agrr I S  -, aNs 
84s aPr 

which proves that (18) still holds when grs = 0. The same properties for the g" were also 
found to hold for separable conservative systems (Dall'Acqua 1912). If qs and qr are 
both variables of the second kind, (5c) becomes 

If gs+ 0, we have 

In the case gs = 0, this relation follows immediately from (56), together with (9a),  (96) 
and (16). Following the same argument as was used for obtaining (17), we get 

We now return to the relations (6), (6a) and (66). Differentiation of (6a) with respect to 
pr yields 

(21) 
-- agrr = grrK;o). 
at 
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Comparing this with (6b) ,  we see that 

ag' g' ag" 
a t  gw at 
----= - 0, 

and so 

Combining (21) and (6) one can also easily prove that 

Henceforward we shall suppose, without loss of generality, that 

11 = (41, q z ,  a 4 ~ ) ,  

1 2  = {qfi+l, q f i + 2 ,  q n l ,  

where 0 C A c n,  with 6 = 0 and A = n corresponding respectively to the cases Il = 0, 
I z = { q l , q z ,  . . . ,  4n}andIi={qi,qz , . . . ,  4 n I , 1 2 = 0 .  

Unless stated otherwise the Latin indices i, j ,  k, 1, m will refer to variables of the first 
kind and the indices r, s, U to those of the second kind. Using the same convention as 
Havas (1975), summation from 1 up to and including A will be indicated by 8' and 
summation from f i  + 1 up to and including n by Err. 

As a last step in this section we are now going to examine the functions Ni 
(i  = 1 ,2 ,  . , , , A). Differentiation of (4) twice with respect to pi shows after a short 
calculation, similar to the one we have performed to derive (9), that 

i =  1 , 2 , .  . . ,A. 

Taking into account (9) and (1 8), the identity ( 5 )  becomes 

and, after differentiating twice with respect to p , ,  we obtain 

Inserting (25) into (24) we finally arrive at 

N zCrAi,(4, t ) P j + A i ( q ,  t ) ,  
I 

where 

and ( i , j =  1 , 2 , .  . . , f i ) ,  
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Consequently, the functions Ni are independent of the momenta conjugated to 
variables of the second kind (which can also be proved indirectly). 

The preceding results will now suffice to construct a complete integral of the form (3) 
for the given Hamilton-Jacobi equation (2) which, by assumption, is known to be 
separable. 

3. General solution 

Let us denote the complete integral we are looking for, by 

We shall calculate these functions by means of the method introduced by Dall'Acqua 
(1912). The treatment will clearly differ according to the kind of variable we are 
dealing with. In the case of a separable Hamilton-Jacobi equation, the following 
relations are known to hold identically (Levi-Civita 1904, Forbat 1944): 

aH'a4~ j = I ,  2, . . . , n, d -pp( .)E -- 
dqj 1 41 aH/apj' 

where all the momenta are considered as functions of the corresponding coordinate, 
given by (27). For the momenta conjugated to a variable of the first kind, we then have 
by (4) and (26) 

i = l , 2  , . . . ,  A. (28) 
d 

-Pi(qi)= -x'Aij(47 t)Pj(qj)-Ai(q, t ) ,  
d4i 1 

Fixing all variables in this identity, different from 4;, at their initial value ( t  = to, 4 = 4:) 
and putting the constants pi(4:) = ci, we obtain the following linear ordinary differential 
equation: 

pi(4i)=c1 #'ij(4i)clf$i(4i), i = 1 , 2 , .  . . , A ,  (29) 
i 

where and #'ij ( j =  1 ,2 ,  . . . , A)  are known functions of 4i only. Using the expressions 
for the A,, (see (26)) one can calculate the functions #'ij explicitly and verify that 
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det(&i) $0. In order to find a solution for the momenta p r  ( r  = f i  + 1,  f i  + 2,  , , , , n ) ,  we 
return to the Hamilton-Jacobi equation (2) .  This equation must be fulfilled identically 
by @(q, c, t ) .  Putting R ( t )  = a @/at ( = d W0/dt) and using (27), we then have 

t 2 g"(q, t)pl(ql)p,(q,)+ f g'(q, t)pI(qi)+EgO(q, t ) +  ~ ( 4 ,  t)+R(t)EO. (30)  

Fixing all variables, excepted qr (for some r E { f i  + 1, . . . , n}) ,  at their initial value, and 
taking into account (16), we get, after re-arrangement of the terms, 

r,i= 1 r=l 

(3  1) 
g:'p; + 2 (z I g r c ,  ir I +g:) pr +E' g:'c;c; +4Jr + 2 1' g%l +g:+2 v, .+2R0 = 0 ,  

I 1.i 1 

where 

R~ = R ( to) ,  

Q$= 2 1' E" g:"c:c:+ E" g:"c:'+ 2 1 I1 grcs,  s I 

r s # r  s f r  s # r  

and 

C: =PjCqP) f o r j =  1 , 2 , .  . . , n .  

The lower index r indicates that the corresponding functions depend on qr only. 
We shall now transform the expression for 4r. From (17) we have 

Differentation with respect to p r  (for some i E {1,2, . . . , f i } )  yields 

and, in particular 

Integration over qr (between 45) and qr) gives immediately 

where gb' and gg are constants?. Similarly one obtains from (20)  

g:=gSs (2). 
With (32)  and (33) ,  br now becomes 

(32)  

(33) 

t We put g"(q7, . . . , q:, to)  = go" and g'(q7, . . . , q:, to) = g b  for i, j = 1,2,  . . . , n. 
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The expression in large parentheses is a constant for each s. Putting 

f o r a l l s = A + l , t i + 2 , .  . . ,n, gs, I 
is 

c:' =2cIgc;c:+c:*+2,cs 
I go go 

we have 

One can easily verify that the constants c ; ,  . . . , CA, c : + ~ ,  . . . , c: are independent. 
Finally we still have to determine the constant Ron For that purpose we fix all variables 
in (30) at their initial value: 

n n 

i , j  = 1 i - 1  

1 g$c:ci+ gbc:+$g;+Vo+Ro=O, 

and after an analogous calculation to the one we have just performed to derive (34): 

I1 ss I 1  1' g gc :c + 1 go c + 2 1' g bc I + g ; + 2 Vo + 2R 0 = 0. 
1.1 S I 

The constant term VO, arising from the potential energy, being arbitrary, we put 
Vo = - zgo, so that 1 0  

I li I I - I1 ss II I i i  2Ro=-C goclcl c gocs -2c gocl. 
1.1 S I 

Substituting (34) and (35) into (31), the quadratic equation in pr  becomes 

(35) 

+ 2 1' (gi- gb)c; + g; + 2 v, = 0, 

where F!', hj, E, &, U, and CL, are known functions of qr only and FF'(qr) E F ; ~ ( ~ , )  
( j , k , l = l , 2  , . . . ,  A ;  s = A + l , A + 2  , . . . ,  n ) .  Again one can easily check that 
det(4,) f 0. 

It only remains for us now to calculate R ( t ) .  Fixing all variables, except the time t, at 
their initial value, we get from the identity (30) 

where the lower index t indicates the time dependence (for instance: V,= 
V(q?, . . . , qz, t ) ) .  Following an analogous calculation to the one used for obtaining (32) 
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and (33), one can derive from (22) and (23) that 

and 

must hold. Inserting this into the expression for R( t ) ,  we arrive at 

We notice that the coefficient of g:' is just the constant cf, and so, after changing our 
notations, R ( t )  can be written as 

R ( t )  = -?(x'Gk'( t )C;C;+y k,l 5 r s ( ( t ) c f ( + ~ ' k ' ( t ) c : + u ( t ) )  i (37) 

where Gk', k', Is and v are known functions of the time only and Gk'( t )=Glk( f )  
(i, k,  1 = 1,2,  . . . , A ;  s = A + 1, A + 2, . . . , n ) .  Henceforward we shall denote the con- 
stants by c, (i= 1 ,2 , .  , . , n) such that c, = cl for i = 1 ,2 , .  . . , A and cs = c: for s = 
A + 1, A + 2, . . . , n.  In what precedes we have proved that whenever the Hamilton- 
Jacobi equation (2) is separable, there exists a solution 

*(q, c, t )  

satisfying the following ordinary differential equations: 

~O(c7  t )  + f wt(qt, c )  + i Wr(qn c )  fo r some~E{O,1 ,2 ,  . . . ,  n } ,  
1 - 1  r = = A + l  

where c1, c2 ,  . . . , c, are n real independent arbitrary constants. The complete integral 
W is then given by 
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One can easily show that det(d2w/dqi # 0 since neither det(&) nor 
det(&) vanish identically ( k ,  1 = 1, 2, . . . ,A; r, s = A + 1, A +2,  . . . , n). 

Next we shall prove that every function of the form (38) is a complete integral of a 
partial differential equation of the Hamilton-Jacobi type. Suppose we are given the 
following set of arbitrary real continuous functions of a single variable each: dij(qi), 

i, j ,  k , l =  1 , 2 , .  . . , A  a n d r , s = A + l ,  A+2, .  . . , n  for some AE{O, 1 , .  . . ,n},such that 
F!'(qr)=Ftk(qr), Gk'(r)= G i k ( f ) ,  det(Aj)# 0 and det(4,)f 0. Furthermore we are 
given a set of n real arbitrary independent constants c1, c 2 , .  . . , cfl. Consider now the 
function 

4 r s ( 4 7 ) 9  +I(~I), + r ( 4 r ) ,  fX411, hXqr), u r ( q r ) ,  f?'(qr), Gk'(l) ,  15( f ) ,  k ' ( t )  and v ( t ) ,  with 

w =  *&, t )  +y %(qi, c )+c "  Wr(qr, c )  
I r 

defined by (38), where %, Pr and WO respectively satisfy the equations (29a), (36a) 
and (37a). 

We introduce the following notations: det(di,) @,(#O) and det(&) E @II(#O). The 
cofactors of 41i and & will be respectively denoted by aij and We then have the well 
known relations 

A n 

i = l  r = r i + 1  
1 4 i j @ i m  = a j m @ I ,  1 &@ru = asu@II,  

with m = 1,2 ,  . . . , A and U = A + 1, A +2,  . . . , n. If (&) or (&) consist of a single 
element only, we put the corresponding cofactor identical to 1. Elimination of the 
constants from equations (29a), (36a) and (37a) will lead to the partial differential 
equation of which w is a complete integral. Multiplying (29a) by Qim/Q1 and summing 
over i, we obtain after re-arrangement 

The constants c,(r = A + 1, A + 2, . . I , n)  can be calculated from (36a). After re- 
arrangement of the terms and squaring, we multiply this equation by QrU/QII and sum 
over r .  Using (39) we then find 

u = A + l , A + 2 , .  . . , n .  

Substitution of (39) and (40) into (37a) finally gives 
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Working out the left-hand side and re-arranging the terms, we can ascertain that @ is 
indeed a complete integral of a partial differential equation of the type ( 2 ) .  Since A may 
be any integer from 0 up to and including n there are consequently n + 1 types of 
separable systems with n degrees of freedom. 

Comparing the partial differential equation corresponding to (41) with ( 2 )  and 
putting Gij /Gr  = T~~ (i, j ,  = 1,2,  . . . , A)  and Grs/@Ir = T,, (r ,  s = A + 1 , A  +2, . . , n ) ,  we 
arrive at the following expressions: 

g" =Er1 lS( f )Trs ,  
S 

g" I O ,  r # s, 

- $ X I  ( k ' ( t ) + ~ ' '  (2f!Jr-h!)g")JivlI +$y' ( # f + 2 u r ) g r r + $ u ( t ) ,  
I , /  r 

i , j = 1 , 2  , . . . ,  E, r , s = E + l , A + 2  ) . . . )  n, (42) 

where all the functions on the right-hand sides should be interpreted as before. 
From the preceding it follows that (42)  represents a necessary condition for the 

separability of equation (2). Conversely, suppose we have a Hamiltonian of form (l), 
such that (42)  is satisfied for some 3 E (0, 1, . . . , n}. We can then verify that the function w, defined by (38), is a complete integral of the corresponding Hamilton-Jacobi 
equation. We can therefore state the following theorem. 

Theorem. Suppose we are given a Hamiltonian of type (1). The necessary and sufficient 
conditions for the corresponding Hamilton-Jacobi equation to be separable are that the 
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functions gli, g ' ( i , j  = 1 , 2 ,  . . , , n )  and $go+ V (eventually after renumbering the vari- 
ables) can be written in the form (42) for some A E (0, 1, . . , , n} ,  where: 

(i) Gkf( t ) ,  l s ( t ) ,  k'( t ) ,  u ( t ) ,  Fff(4r), f X 4 r 1 9  hI(qr), Cc/8(41), C c / r ( q r )  and ~ r ( 4 r )  are 
arbitrary, real continuous functions of one variable each; 

(ii) Gkf( t )  = GIk ( t ) ,  F,kr(qr) = FP(4,); 
(iii) two sets of real continuous functions 4e(ql)(i, j = 1,2,  . . . , E) and &(qr)  

(r ,  s = f i  + 1, f i  + 2, , . . , n )  exist, each with non-vanishing determinant, such 
that 

1' 4 i j q i k  = a j k  and E" 4 r s q r u  = 
I r 

4. Remarks 

(i) The expressions in (42) are in accordance with those obtained by Iarov-Iarovoi 
(1963). 

For 'natural' conservative systems (i.e. conservative systems having a Hamiltonian 
without linear terms in the momenta) we recover the results derived by Havas (1975), 
taking into account, however, the modified significance of the constants appearing in 
the complete integral. 

The above results are further also applicable to general, non-natural conservative 
systems: e.g. the problem of the spinning top, for which the Hamilton-Jacobi equation 
is separable (Pars 1965). 

(ii) For completeness it may be noticed that from a mechanical point of view, the 
additive function of time U(?), appearingin the Hamiltonian, is superfluous. This follows 
immediately from the equations of motion, where such a term vanishes. Therefore, the 
function v ( t )  may be omitted. This can be justified by observing that it is allowed to 
modify the potential energy (by adding an arbitrary continuous function of time) in 
order to obtain V(47, . . . , qn,  t )  = -zg (q l ,  . . ,4:, t ) ,  yielding v ( t )  = 2V,+gp = 0 (see 
(37)). 

0 1 0  0 

(iii) Let us now consider the special case of a time-dependent Hamiltonian for which 
H I  = 0 and Ho is supposed to depend on all the coordinates. The property H I  = 0 is 
clearly equivalent to g' = 0 for all j = 1,2, , . . , n. If the Hamilton-Jacobi equation for 
such system is separable, it then follows from (4c) that 

for i = 1,2,  . . . , A. Consequently, since Ho depends on all the coordinates, there may be 
no variables of the first kind, i.e. A = 0. By means of the preceding results one can now 
readily verify that the Hamiltonian must be of the form 

n 

r = l  
H = $  g""p;+;go+ v, 

with 
n n 

;go+ v= 1 u,g"+$u(t).  
r = l  

g"'= C I s ( t ) q r s ,  
s=l 
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The complete integral will then be given by 

This is precisely the solution found by Forbat (1944). 
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